

Hydrogen and the **Decarbonization of Steel Production in Canada**

ERH2 PRESENTATION - DEC 14, 2023

Mohd Adnan Khan, Ph.D., **University of Alberta**; Michael Powell, M.Sc., Thorn Associates; Martin Tampier, P.Eng., ENVIT Consulting; Emily Thorn, P. Eng., Thorn Associates; David Layzell, Ph.D., FRSC, The Transition Accelerator

Canadian Steel Producers Association

Funding

Natural Resources Canada

Funding Recipient & Steering Committee

Canadian Steel Producers Association

Content Creation

The Transition Accelerator

L'Accélérateur de transition

Authors

Mohd Adnan Khan, Ph.D. Michael Powell, M.Sc. Martin Tampier, P.Eng. Emily Thorn, P. Eng. David Layzell, Ph.D., FRSC

- 1. Steelmaking in Canada
- 2. Study Context and Objectives
- 3. Steel Production: Energy use & emissions
- 4. A case study of H₂ DRI-EAF in the Hamilton Region
- The steel industry as an anchor tenant in a larger Ontario H₂ economy
- 6. Recommendations

STEELMAKING IN CANADA AND CURRENT DECARBONIZATION MEASURES

Steelmaking in Canada

Steel is deep rooted in our society: Construction, Industry, Health, Transportation etc.

- Canada's 15 billion \$ steel industry: 13 Mt steel products (Top 20); Directly/Indirectly employing over a 100,000 people.
- Steel will also be an integral ingredient for the energy transition, with solar panels, wind turbines, dams and electric vehicles all depending on it to varying degrees

*

Steelmaking in Canada

□Total emissions from steelmaking in Canada are ~15 Mt-CO₂eq annually

□Since 1990, the Canadian steel industry has voluntarily invested to reduce energy consumption and emissions, achieving a 31.5% reduction in absolute GHG emissions by 2016

One of the lowest GHG intensity globally for steelmaking.¹

Where do we produce Steel in Canada

 3 Integrated plants for Primary Steel making – Blast Furnace/Basic Oxygen
 Furnace in Southern Ontario

7 EAF plants for secondary steelmaking located throughout Canada

□72% of Canadian steelmaking is concentrated in Ontario alone

□ 1 DRI plant in Quebec

Export of Canadian Steel

Canada exports steel to over 130 countries and territories.
 The United States and Mexico represent the top markets for Canada's exports of steel, receiving more than 350 thousand metric tons each.

Canada's Exports of Steel Mill Products-YTD 2019 (Top Ten in Blue)

Algoma Steel is transitioning from BF-BOF to full EAF mode by 2026

ArcelorMittal Dofasco invested in a 2.5 Mt "hydrogen-ready" natural-gas DRI furnace to replace current integrated mill by 2028

In 2022, ArcelorMittal DRI facility in Quebec successfully tested partial replacement of natural gas with hydrogen

Each organization's approach to decarbonization and pursuing carbonreducing technologies will be unique and depends on several factors

Steel production is forging a new future in Hamilton as it shifts from being a large contributor to climate change to being an important solution.¹

STUDY CONTEXT

Study Context & Objectives

- In alignment with the Canadian Steel Producers Association (CSPA) new Climate Vision - to achieve net zero carbon dioxide emissions by 2050.¹
- □Slowly developing market for low-GHG steel as different industries look to decarbonize
- □Various options for decarbonizing steel production being investigated - likely path forward will be a combination of several solutions
- ArcelorMittal Dofasco plant in Hamilton has committed to transition to natural gas (NG DRI-EAF) - The technology has the potential to transition to zero-emission hydrogen fuel (H₂ DRI-EAF) in the future.
- □Options beyond hydrogen adoption are not discussed in any depth in this report but should be considered as integral in the steel sector's decarbonization strategy.

Purpose of this report:

To explore the potential for hydrogen to decarbonize the Canadian steel industry, with a focus on possible sources of low-GHG hydrogen and the costs to deliver it at the scale needed to the Dofasco plant in the Hamilton region.

ENERGY USE & EMISSIONS ASSOCIATED WITH CANADIAN STEEL PRODUCTION

Recycled Steel

EAF

<u>Abbreviations</u> BF – Blast Furnace BOF – Basic Oxygen Furnace DRI – Direct Reduction of Iron EAF – Electric Arc Furnace NG – Natural Gas H₂ - Hydrogen

Energy Use & Emissions with Primary Steel Production

NOTES RE ENERGY USE:

DRI is more energy efficient than BF-BOF.
 DRI can be fueled with either NG or H₂ (similar energy demand in GJ/t Steel)

Energy use and GHG Emissions in Steel Making

NOTE RE ENERGY USE:

- □ DRI is more energy efficient than BF-BOF.
- DRI can be fueled with either NG or H₂ (similar energy demand in GJ/t Steel)
- Assuming NG price of ~C\$5.50/GJ (no C tax); & best H₂ price will be C\$14 to C\$28/GJ (\$2-\$4/kg H₂)
- □ So fuel energy price is going to be 2.5 to 5 X more with H2 DRI-EAF than with NG DRI-EAF
- **Minimizing the cost of H**₂ supply will be critical!

NOTE RE GHG EMISSIONS:

- Compared to BF-BOF, on site (Scope 1) emissions for DRI with NG is reduced by ~70%
- ...but must add upstream (Scope 2) emissions for electricity generation and NG production so reduction would be ~50-60% of BF-BOF
- □ H₂ DRI-EAF can reduce Scope 1 GHG emissions to zero or near zero.

The Technologies and Cost of Low C H₂ Production

1. Water Electrolysis:

Levelized cost of H₂ production (C\$/kg H₂)

\$20

\$16

\$12

\$8

\$4

\$0

A. Electrolysis Today (2020)

- □ To deliver H₂ at ~\$3/kg H₂, a near-continuous access to electricity @ \$30/MWh needed
- In future, even a higher electricity price of \$50/MWh would
- Typical price is \$50-\$130/MWh

B. Electrolysis Future (2040)

The Technologies and Cost of Low-GHG H₂ Production

2. Natural Gas Reforming

Low-GHG H_2 production from natural gas with CCS (Blue H_2) is lower cost than that from electrolysis (Green H_2), but:

- Blue H₂ requires the geology for permanent CO₂ storage
- Must be done at scale (200+ t H₂/day)

But what about CO₂ intensity of production?....

The GHG Intensity of Hydrogen Production

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf

production and upstream emissions of H_2

Kg CO₂e/MJ_{hhv} H₂

A CASE STUDY OF H₂ DRI-EAF IN THE HAMILTON REGION

A Case Study for Conversion to H2 DRI-EAF in Ontario

Table 5.1. Steel production facilities in Ontario, Canada.

Source: Adapted from References [69,72].

Number	Location	Name	Technology	Low-C strategy
1	L'Orignal	Ivaco Rolling Mills	Electric Arc Furnace	Use of low-C
				electricity
2	Sault Ste Marie	Algoma Steel Inc.	Integrated Mill – BF/ BOF	Towards EAF with
				low-C electricity [73]
3	Cambridge	Gerdau	Electric Arc Furnace	Use of low-C
			(idled)	electricity
4	Whitby	Gerdau	Electric Arc Furnace	Use of low-C
				electricity
5	Nanticoke	Stelco	Integrated Mill - BF/ BOF	Unannounced
6	Welland	Valbruna ASW Inc	Electric Arc Furnace	Use of low-C
				electricity
7	Hamilton	ArcelorMittal Dofasco	Integrated Mill - BF/BOF	NG-DRI to H2-DRI
			+ EAF	[74]

Note: Facility # 7 highlighted in bold text is the one assessed in this study for conversion to H2-DRI-EAF plants.

Dofasco Site:

- □ 2.5 Mt DRI/yr capacity
- Due to availability of public data, we assumed the <u>Midrex</u> H₂ DRI-EAF process.
- Estimated demand for:

 ~6% of Canada's current industrial H₂ production
 To produce H₂ via electrolysis

would require ~27 GWh electricity/d (6.5% of Ontario's current power generation of 153 TWh/y). If electricity delivered to the Dofasco plant is \$126/MWh, the H₂ cost would be \$7.46/kg H₂ (=\$53/GJ) NG today is \$80/MWh, the H₂ cost would be \$5.06/kg H₂ (=\$36/GJ) \$5.50/GJ

It is difficult to see how 'Green' H₂ produced at the Dofasco site could be a cost-effective solution in the near future. What about Blue H₂?

Carbon Storage Potential in North America

Enough for 38,000 years of CO_2 storage from Dofasco

Cost Estimates for pipeline delivered Hydrogen

 $\hfill\square$ Natural gas cost

C\$4/GJ at

source (lower

than est.

Hamilton price

of C\$5.5/GJ

NG)

 If pipeline sizing is optimized for 492 tH₂/d, the estimated delivered cost is C\$3.10/kg H₂ (C\$21.88/GJ_{hhv}), about 4X the current C\$5.50/GJ_{hhv} NG cost in Hamilton.

The problems with a dedicated, 400 km
H₂ pipeline feeding only one company.
Still a high price for energy supply
Higher risk, that could drive up costs and reduced project viability

Less likely to attract public support

Are there other potential markets for low carbon H₂ in ON that could help to reduce costs while addressing climate change?

THE STEEL INDUSTRY AS THE ANCHOR TENANT IN A LARGER ONTARIO H₂ ECONOMY

End Use Energy Demand in ON

(not including electricity or O&G prod'n)

Steel industry is only 7%

What are the most credible/likely net-zero solutions for these sectors?

- · ·

Transportation (2019)

		Α	В	С	D	E	F	G	н	1	J	К	L	М	Ν		
			20:	19 Energy	use			Zero Emission Energy System Delivering Similar Energy Services									
	Sector		Electricity		Fossil Fuels	Total	Low Elec	Low GHG Electricity		Bioenergy/fuels		Hydrogen & Ammonia		Fossil Fuels with 90% CCS			
			TWhr/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	TWh/yr	PJ/yr	Mt /yr	PJ/yr	t H ₂ /d	PJ/yr f	MT CO ₂ /yr	PJ/yr		
ല്ല	딸 Transportation		0.4	45.9	896	943	122	33.9	102	12.6	189	3647			412		
luci	Agriculture	9.47	2.6		53	63	23.5	6.53	1.30	0.16	18.2	353			43		
rod	Residential	158	43.9	28.7	397	584	295	82.0	29.61	1.83	98.0	1895			423		
SV P	Commercial	192	53.3		264	456	275	76.5			68.6	1326			344		
Jerg	Industry (non-energy)	135	37.6	42	428	605	316	87.9	89.4	5.55	107	2063	40.8	3.28	553		
on-ei	Non-Energy TTL:	496	138	117	2038	2651	1032	287	222	20	480	9284	40.8	3.28	1775		
Ž																	
		Ĺ							T				T				
							_					L					

Projected Net-Zero future for Ontario's Energy System:

(based on 2019 data, not counting 36% increase in pop'n growth to 2050) Doubling in size of public electricity grid with low GHG power.

More than double biomass→ energy demand to 20 Mt/yr CCS of 3.3 Mt CO₂/yr (not counting refineries & power gen)

			Α	В	С	D	E	F	G	н	1	J	К	L	М	Ν
				20	Zero Emission Energy System Delivering Similar Energy Services											
		Sector		Electricity		Fossil Fuels	Total	Low GHG Electricity		Bioenergy/fuels		Hydrogen & Ammonia		Fossil Fuels with 90% CCS		TOTAL
			PJ/yr	TWhr/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	TWh/yr	PJ/yr	Mt /yr	PJ/yr	t H ₂ /d	PJ/yr	MT CO ₂ /yr	PJ/yr
	вu	Transportation	1.5	0.4	45.9	896	943	122	33.9	102	12.6	189	3647			412
	luci	Agriculture	9.47	2.6		53	63	23.5	6.53	1.30	0.16	18.2	353			43
	roc	Residential	158	43.9	28.7	397	584	295	82.0	29.61	1.83	98.0	1895			423
	gy F	Commercial	192	53.3		264	456	275	76.5			68.6	1326			344
	ner	Industry (non-energy)	135	37.6	42	428	605	316	87.9	89.4	5.55	107	2063	40.8	3.28	553
	n-e	Non-Energy TTL:	496	138	117	2038	2651	1032	287	222	20	480	9284	40.8	3.28	1775
	Ň	SW Ont. only*	346	96	81	1419	1846	719	200	155	14	334	6462	40.8	3.28	1248
	ک م	^o Refineries		•							4		410		•	
	erg	Peak Power (IESO)											2384			
	En	Fnergy TTI ·											2794			
	Onto										_		12079			
	Unte												12078			
;	* For	all but CCS estimates, va	alues cal	culated as	70% of all	Ontario v	alues base	ed on prop	portion of	f 2021 po	opulation	living ir	n Toronto	(6.2M)), Hamilton ((0.78M),
ł	Kitche	ener-Cambridge-Waterlo	bo (0.58N	VI), Londor	n (0.54M),	St Cather	ines-Niaga	ara (0.43M	l), Winds	or (0.421	M), Oshav	va (0.42	2M), Barri	e (0.21	M), Guelph	(0.17M)
č	and B	rantford (0.14M) when t	he provi	ncial popu	lation was	14.2M (h	ttps://ww	w150.statc	an.gc.ca/	/t1/tbl1/	/en/tv.act	on?pid=	= 981(000)	1 01).		
	_	· · · · - · · ·														
proje	cteo	d Net-Zero	Do	oubling	r in		1	More tl	nan			Lc	w GH	GH ₂		CCS of
uture for Ontario's Energy System:		size of public				double				demand of up to				()		
		Size of public			uouble								(10 - 1)			
	ed on 2019 data, not nting 36% increase in		eleo	ctricity	grid		k	piomas	s→			12,0	000 t H	I_2/da	ay	(NOT CO
eu on			wit	h low (GHG		ene	ergv de	mand			(20	019 en	nergy	,	refine
nting				nower			+	0, 20 M	+/vr			•	syster	n) .		DOWE
op'n c	grou	vth to 2050)		power	•		U		נ/ או				Syster			powe

The Effect of Scale on Cost of Pipelining H₂ to Ontario

If satisfying the steel industry's H₂ demand (492 t H_2/d) was part of a larger supply strategy for Ontario, what would be the effect on H_2 cost?

RECOMMENDATIONS

THANK YOU